NMR studies on functional structures of the AU-rich element-binding domains of Hu antigen C.

نویسندگان

  • M Inoue
  • Y Muto
  • H Sakamoto
  • S Yokoyama
چکیده

Hu antigen C (HuC) has three RNA-binding domains (RBDs). The N-terminal two, RBD1 and RBD2, are linked in tandem and bind to the AU-rich elements (AREs) in the 3'-untranslated region of particular mRNAs. The solution structures of HuC RBD1 and RBD2 were determined by NMR methods. The HuC RBD1 and RBD2 structures are quite similar to those of Sxl RBD1 and RBD2, respectively. The individual RBDs of HuC, RBD1 and RBD2 in isolation can interact rather weakly with the minimal ARE motif, AUUUA, while the didomain fragment, RBD1-RBD2, of HuC binds more tightly to a longer ARE RNA, UAUUUAUUUU. Chemical shift perturbations by the longer RNA on HuC RBD1-RBD2 were mapped on and around the two beta-sheets and on the C-terminal region of RBD1. The HuC RBD1-RBD2 residues that exhibited significant chemical shift perturbations coincide with those conserved in Sxl RBD1-RBD2. These data indicate that the RNA-binding characteristics of the HuC and Sxl didomain fragments are similar, even though the target RNAs and the biological functions of the proteins are different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Superficial Clefts on Fragment of Antigen Binding in Human Immunoglobulin G by Computational Immunology

Background: Immunoglobulins (Igs) are protective glycoproteins specifically identify and eradicate microbes. Fragment of antigen binding (Fab) is a portion of antibody which binds to antigen and consists of one variable and one constant domain of one heavy and one light chain. Idiotypes, epitopes situated on Igs variable region, could be exploited to monitor and target malignant B cells and are...

متن کامل

The effects of isomerism and side chain mutation on binding energy and NMR/NQR tensors of L-methionylasparagine and L-asparagylmethionine

Density functional theory methods(DFT) and natural bond orbital (NBO) analysis were used to investigate the effects of isomerism and side chain mutation at a microscopic level on the stability, binding energy and NMR/NQR tensors of structural isomers, L- methionylasparagine (Met-Asn) and L- asparagylmethionine (Asn-Met) in the gas phase. The results represented that the isomerism and side chain...

متن کامل

Density Functional Theory Studies of Defects in the (5,5) Silicon Nanotube

We have performed density functional theory (DFT) calculations to investigate the properties of defect in arepresentative armchair model of silicon nanotubes (SiNTs). To this aim, the structures of pristine and defective(5,5) SiNTs have been optimized and the properties such as bond lengths, total energies, binding energies,.formation energies, gap energies, and dipole moments have been evaluat...

متن کامل

Sequence-specific RNA binding mediated by the RNase PH domain of components of the exosome.

We have previously demonstrated that PM-Scl-75, a component of the human exosome complex involved in RNA maturation and mRNA decay, can specifically interact with RNAs containing an AU-rich instability element. Through the analysis of a series of deletion mutants, we have now shown that a 266 amino acid fragment representing the RNase PH domain is responsible for the sequence-specific binding t...

متن کامل

A hybrid density functional theory (DFT) and ab initio study of α-Acyloxycarboxamides Derived from Indane-1, 2, 3-trione

α-acyloxycarboxamides are synthesized from three component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 8  شماره 

صفحات  -

تاریخ انتشار 2000